Optimal Image Representation for Linear Canonical Transform Multiplexing
نویسندگان
چکیده
Digital images are widely used in computer applications. To store or transmit the uncompressed images requires considerable storage capacity and transmission bandwidth. Image compression is a means to perform transmission or storage of visual data in the most economical way. This paper explains about how images can be encoded to be transmitted in a multiplexing time-frequency domain channel. Multiplexing involves packing signals together whose representations are compact in the working domain. In order to optimize transmission resources each 4 × 4 pixel block of the image is transformed by a suitable polynomial approximation, into a minimal number of coefficients. Less than 4 × 4 coefficients in one block spares a significant amount of transmitted information, but some information is lost. Different approximations for image transformation have been evaluated as polynomial representation (Vandermonde matrix), least squares + gradient descent, 1-D Chebyshev polynomials, 2-D Chebyshev polynomials or singular value decomposition (SVD). Results have been compared in terms of nominal compression rate (NCR), compression ratio (CR) and peak signal-to-noise ratio (PSNR) in order to minimize the error function defined as the difference between the original pixel gray levels and the approximated polynomial output. Polynomial coefficients have been later encoded and handled for generating chirps in a target rate of about two chirps per 4 × 4 pixel block and then submitted to a transmission multiplexing operation in the time-frequency domain. Keywords—Chirp signals, Image multiplexing, Image transformation, Linear canonical transform, Polynomial approximation.
منابع مشابه
Planelet Transform: A New Geometrical Wavelet for Compression of Kinect-like Depth Images
With the advent of cheap indoor RGB-D sensors, proper representation of piecewise planar depth images is crucial toward an effective compression method. Although there exist geometrical wavelets for optimal representation of piecewise constant and piecewise linear images (i.e. wedgelets and platelets), an adaptation to piecewise linear fractional functions which correspond to depth variation ov...
متن کاملCanonical representation for approximating solution of fuzzy polynomial equations
In this paper, the concept of canonical representation is proposed to find fuzzy roots of fuzzy polynomial equations. We transform fuzzy polynomial equations to system of crisp polynomial equations, this transformation is perform by using canonical representation based on three parameters Value, Ambiguity and Fuzziness.
متن کاملSampling of compact signals in offset linear canonical transform domains
The offset linear canonical transform (OLCT) is the name of a parameterized continuum of transforms which include, as particular cases, the most widely used linear transforms in engineering such as the Fourier transform (FT), fractional Fourier transform (FRFT), Fresnel transform (FRST), frequency modulation, time shifting, time scaling, chirping and others. Therefore the OLCT provides a unifie...
متن کاملSampling Rate Conversion in the Discrete Linear Canonical Transform Domain
Sampling rate conversion (SRC) is one of important issues in modern sampling theory. It can be realized by up-sampling, filtering, and down-sampling operations, which need large complexity. Although some efficient algorithms have been presented to do the sampling rate conversion, they all need to compute the N-point original signal to obtain the up-sampling or the down-sampling signal in the tim...
متن کاملWavelet Transformation
Wavelet transformation is one of the most practical mathematical transformations in the field of image processing, especially image and signal processing. Depending on the nature of the multiresolution analysis, Wavelet transformation become more accessible and powerful tools. In this paper, we refer to the mathematical foundations of this transformation. Introduction: The...
متن کامل